Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396640

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by degeneration of lower motor neurons (LMNs), causing muscle weakness, atrophy, and paralysis. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and can be classified into four subgroups, depending on its severity. Even though the genetic component of SMA is well known, the precise mechanisms underlying its pathophysiology remain elusive. Thus far, there are three FDA-approved drugs for treating SMA. While these treatments have shown promising results, their costs are extremely high and unaffordable for most patients. Thus, more efforts are needed in order to identify novel therapeutic targets. In this context, zebrafish (Danio rerio) stands out as an ideal animal model for investigating neurodegenerative diseases like SMA. Its well-defined motor neuron circuits and straightforward neuromuscular structure offer distinct advantages. The zebrafish's suitability arises from its low-cost genetic manipulation and optical transparency exhibited during larval stages, which facilitates in vivo microscopy. This review explores advancements in SMA research over the past two decades, beginning with the creation of the first zebrafish model. Our review focuses on the findings using different SMA zebrafish models generated to date, including potential therapeutic targets such as U snRNPs, Etv5b, PLS3, CORO1C, Pgrn, Cpg15, Uba1, Necdin, and Pgk1, among others. Lastly, we conclude our review by emphasizing the future perspectives in the field, namely exploiting zebrafish capacity for high-throughput screening. Zebrafish, with its unique attributes, proves to be an ideal model for studying motor neuron diseases and unraveling the complexity of neuromuscular defects.


Assuntos
Doença dos Neurônios Motores , Atrofia Muscular Espinal , Doenças Neurodegenerativas , Animais , Humanos , Peixe-Zebra/genética , Atrofia Muscular Espinal/terapia , Neurônios Motores , Proteína 1 de Sobrevivência do Neurônio Motor , Modelos Animais de Doenças
2.
Nat Neurosci ; 20(12): 1686-1693, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29184198

RESUMO

All animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is not well understood. Here we show that noxious heat and irritant chemicals elicit robust escape behaviors in the planarian Schmidtea mediterranea and that the conserved ion channel TRPA1 is required for these responses. TRPA1-mutant Drosophila flies are also defective in noxious-heat responses. We find that either planarian or human TRPA1 can restore noxious-heat avoidance to TRPA1-mutant Drosophila, although neither is directly activated by heat. Instead, our data suggest that TRPA1 activation is mediated by H2O2 and reactive oxygen species, early markers of tissue damage rapidly produced as a result of heat exposure. Together, our data reveal a core function for TRPA1 in noxious heat transduction, demonstrate its conservation from planarians to humans, and imply that animal nociceptive systems may share a common ancestry, tracing back to a progenitor that lived more than 500 million years ago.


Assuntos
Nociceptividade/fisiologia , Planárias/fisiologia , Espécies Reativas de Oxigênio/farmacologia , Canal de Cátion TRPA1/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Drosophila , Proteínas de Drosophila/genética , Peróxido de Hidrogênio/farmacologia , Canais Iônicos , Nociceptividade/efeitos dos fármacos , Técnicas de Patch-Clamp , Interferência de RNA , Canal de Cátion TRPA1/genética
3.
Regeneration (Oxf) ; 3(3): 168-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27606067

RESUMO

Regeneration involves precise control of cell fate to produce an appropriate complement of tissues formed within a blastema. Several chromatin-modifying complexes have been identified as required for regeneration in planarians, but it is unclear whether this class of molecules uniformly promotes the production of differentiated cells. We identify a function for p66, encoding a DNA-binding protein component of the NuRD (nucleosome remodeling and deacetylase) complex, as well as the chromodomain helicase chd4, in suppressing production of photoreceptor neurons (PRNs) in planarians. This suppressive effect appeared restricted to PRNs because p66 inhibition did not influence numbers of eye pigment cup cells (PCCs) and decreased numbers of brain neurons and epidermal progenitors. PRNs from p66(RNAi) animals differentiated with some abnormalities but nonetheless produced arrestin+ projections to the brain. p66 inhibition produced excess ovo+otxA+ PRN progenitors without affecting numbers of ovo+otxA- PCC progenitors, and ovo and otxA were each required for the p66(RNAi) excess PRN phenotype. Together these results suggest that p66 acts through the NuRD complex to suppress PRN production by limiting expression of lineage-specific transcription factors.

4.
PLoS Genet ; 10(7): e1004452, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992682

RESUMO

Mechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury. We used expression profiling of purified neoblasts to identify factors needed for anterior pole formation. Using this approach, we identified zic-1, a Zic-family transcription factor, as transcriptionally activated in a subpopulation of neoblasts near wound sites early in head regeneration. As head regeneration proceeds, the Wnt inhibitor notum becomes expressed in the newly forming anterior pole in zic-1-expressing cells descended from neoblasts. Inhibition of zic-1 by RNAi resulted in a failure to express notum at the anterior pole and to regenerate a head, but did not affect tail regeneration. Both injury and canonical Wnt signaling inhibition are required for zic-1 expression, and double-RNAi experiments suggest zic-1 inhibits Wnt signaling to allow head regeneration. Analysis of neoblast fate determinants revealed that zic-1 controls specification of notum-expressing cells from foxD-expressing neoblasts to form the anterior pole, which organizes subsequent outgrowth. Specialized differentiation programs may in general underlie injury-dependent formation of tissue organizing centers used for regenerative outgrowth.


Assuntos
Proteínas de Helminto/genética , Células-Tronco Pluripotentes , Regeneração/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/crescimento & desenvolvimento , Planárias/genética , Cauda/crescimento & desenvolvimento , Fatores de Transcrição
5.
Development ; 140(6): 1282-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23444356

RESUMO

Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Organogênese/genética , Organogênese/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
6.
J Cell Biol ; 194(1): 77-87, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21746852

RESUMO

Mammals lacking BLOC-3 have impaired formation of melanosomes, a type of lysosome-related organelle (LRO), and, in earlier work, we found that a subunit of the BLOC-3 complex inhibits loading of Argonaute (Ago) proteins with small ribonucleic acids (RNAs) in Drosophila melanogaster cells. Small RNAs such as small interfering RNAs (siRNAs) direct Ago proteins to repress the stability of messenger RNA transcripts. In this paper, we show that BLOC-3 is required for biogenesis of Drosophila LROs called pigment granules. Other complexes that sort cargo to pigment LROs also negatively regulate siRNA activity. However, regulation is not obligately linked to biogenesis of LROs but instead to specific cargo-sorting processes. Negative regulation is also not linked to sorting into all LROs but only a specific class of pigment LRO. Thus, regulation of siRNA activity is tied to sorting of specific types of cargo to particular LROs.


Assuntos
Proteínas de Drosophila/genética , Inativação Gênica , Lisossomos/metabolismo , Organelas/metabolismo , Pigmentos Biológicos/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/genética , Animais , Proteínas Argonautas , Drosophila melanogaster
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA